Sums of odd-ly many fractions and the distribution of primes

Vivian Kuperberg

November 2nd

In this talk, I will discuss new bounds on constrained sets of fractions. Specifically, I will discuss the answer to the following question, which arises in several areas of number theory: For an integer $k \geq 2$, consider the set of k-tuples of reduced fractions $\frac{a_{1}}{q_{1}}, \ldots, \frac{a_{k}}{q_{k}} \in I$, where I is an interval around 0 . How many k-tuples are there with $\sum_{i} \frac{a_{i}}{q_{i}} \in \mathbb{Z}$?

When k is even, the answer is well-known: the main contribution to the number of solutions comes from "diagonal" terms, where the fractions $\frac{a_{i}}{q_{i}}$ cancel in pairs. When k is odd, the answer is much more mysterious! In ongoing work with Bloom, we prove a nearoptimal upper bound on this problem when k is odd. I will also discuss applications of this problem to estimating moments of the distribution of primes in short intervals.

