BEGIN:VCALENDAR
VERSION:2.0
PRODID:icalendar-ruby
CALSCALE:GREGORIAN
METHOD:PUBLISH
BEGIN:VTIMEZONE
TZID:Europe/Vienna
BEGIN:DAYLIGHT
DTSTART:20200329T030000
TZOFFSETFROM:+0100
TZOFFSETTO:+0200
RRULE:FREQ=YEARLY;BYDAY=-1SU;BYMONTH=3
TZNAME:CEST
END:DAYLIGHT
BEGIN:STANDARD
DTSTART:20191027T020000
TZOFFSETFROM:+0200
TZOFFSETTO:+0100
RRULE:FREQ=YEARLY;BYDAY=-1SU;BYMONTH=10
TZNAME:CET
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
DTSTAMP:20230327T161117Z
UID:5db2dfa919981247351787@ist.ac.at
DTSTART:20191029T173000
DTEND:20191029T183000
DESCRIPTION:Speaker: Marianna Russkikh\nhosted by M. Beiglböck\, N. Berest
ycki\, L. Erdös\, J. Maas\nAbstract: One of the main questions in the con
text of the universality and conformal invariance of a critical 2D lattice
model is to find an embedding which geometrically encodes the weights of
the model and that admits nice discretizations of Laplace and Cauchy-Riema
nn operators. We establish a correspondence between dimer models on a bipa
rtite graph and circle patterns with the combinatorics of that graph. We d
escribe how to construct a 't-embedding' (or a circle pattern) of a dimer
planar graph using its Kasteleyn weights\, and introduce the definition of
discrete holomorphicity on such an embedding. We discuss a concept of per
fect t-embeddings of weighted bipartite planar graphs. We believe that the
se embeddings always exist and that they are good candidates to recover th
e complex structure of big bipartite planar graphs carrying a dimer model.
Based on: Dimers and Circles joint with R. Kenyon\, W. Lam\, S. Ramassamy
\; Dimer model and holomorphic functions on t-embeddings of planar graphs
joint with D. Chelkak\, B. Laslier.
LOCATION:Heinzel Seminar Room / Office Bldg West (I21.EG.101)\, ISTA
ORGANIZER:boosthui@ist.ac.at
SUMMARY:Marianna Russkikh: Dimers and embeddings
URL:https://talks-calendar.ista.ac.at/events/2378
END:VEVENT
END:VCALENDAR