We consider a non-isothermal Cahn-Hilliard model based on a microforce balance. The model was derived by A. Miranville and G. Schimperna starting from the two fundamental laws of Thermodynamics, following M. Gurtin’s two-scale approach. The main working assumptions are on the choice of the Ginzburg-Landau free energy, and on the behaviour of the heat flux as the absolute temperature tends to zero and to infinity. By deriving suitable a priori estimates and by showing weak sequential stability of families of approximating solutions, we prove global-in-time existence for the initial-boundary value problem associated to the entropy formulation and, in a subcase, also to the weak formulation of the model. (Joint work with G. Schimperna)